154 research outputs found

    Critical assessment of human metabolic pathway databases: a stepping stone for future integration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple pathway databases are available that describe the human metabolic network and have proven their usefulness in many applications, ranging from the analysis and interpretation of high-throughput data to their use as a reference repository. However, so far the various human metabolic networks described by these databases have not been systematically compared and contrasted, nor has the extent to which they differ been quantified. For a researcher using these databases for particular analyses of human metabolism, it is crucial to know the extent of the differences in content and their underlying causes. Moreover, the outcomes of such a comparison are important for ongoing integration efforts.</p> <p>Results</p> <p>We compared the genes, EC numbers and reactions of five frequently used human metabolic pathway databases. The overlap is surprisingly low, especially on reaction level, where the databases agree on 3% of the 6968 reactions they have combined. Even for the well-established tricarboxylic acid cycle the databases agree on only 5 out of the 30 reactions in total. We identified the main causes for the lack of overlap. Importantly, the databases are partly complementary. Other explanations include the number of steps a conversion is described in and the number of possible alternative substrates listed. Missing metabolite identifiers and ambiguous names for metabolites also affect the comparison.</p> <p>Conclusions</p> <p>Our results show that each of the five networks compared provides us with a valuable piece of the puzzle of the complete reconstruction of the human metabolic network. To enable integration of the networks, next to a need for standardizing the metabolite names and identifiers, the conceptual differences between the databases should be resolved. Considerable manual intervention is required to reach the ultimate goal of a unified and biologically accurate model for studying the systems biology of human metabolism. Our comparison provides a stepping stone for such an endeavor.</p

    Genome-Wide Identification of Expression Quantitative Trait Loci (eQTLs) in Human Heart.

    Get PDF
    In recent years genome-wide association studies (GWAS) have uncovered numerous chromosomal loci associated with various electrocardiographic traits and cardiac arrhythmia predisposition. A considerable fraction of these loci lie within inter-genic regions. The underlying trait-associated variants likely reside in regulatory regions and exert their effect by modulating gene expression. Hence, the key to unraveling the molecular mechanisms underlying these cardiac traits is to interrogate variants for association with differential transcript abundance by expression quantitative trait locus (eQTL) analysis. In this study we conducted an eQTL analysis of human heart. For a total of 129 left ventricular samples that were collected from non-diseased human donor hearts, genome-wide transcript abundance and genotyping was determined using microarrays. Each of the 18,402 transcripts and 897,683 SNP genotypes that remained after pre-processing and stringent quality control were tested for eQTL effects. We identified 771 eQTLs, regulating 429 unique transcripts. Overlaying these eQTLs with cardiac GWAS loci identified novel candidates for studies aimed at elucidating the functional and transcriptional impact of these loci. Thus, this work provides for the first time a comprehensive eQTL map of human heart: a powerful and unique resource that enables systems genetics approaches for the study of cardiac traits

    Gene expression and microrna expression analysis in small arteries of spontaneously hypertensive rats. Evidence for er stress

    Full text link
    Small arteries are known to develop functional and structural alterations in hypertension. However, the mechanisms of this remodeling are not fully understood.We hypothesized that altered gene expression is associated with the development of hypertension in mesenteric arteries of spontaneously hypertensive rats (SHR). Three sublines of SHR and normotensive Wistar Kyoto rats (WKY) were studied at 6 weeks and 5 months of age. MiRNA and mRNA microarray experiments were performed and analyzed with bioinformatical tools, including Ingenuity Pathway Analysis (IPA). Principal component analysis showed a clear separation in both miRNA and mRNA expression levels between both ages studied, demonstrating strong age-related changes in expression. At the miRNA level, IPA identified differences between SHR and WKY related to metabolic diseases, cellular growth, and proliferation. The mRNAs differentially expressed between SHR and WKY were related to metabolism, cellular movement and proliferation. The most strongly upregulated gene (9.2- fold) was thrombospondin 4 (Thbs4), a protein involved in the endoplasmic reticulum (ER) stress response that activates transcription factor 6α (ATF6α). ATF6α downstream targets were also differentially expressed in SHR vs. WKY. Differential expression of THBS4, the cleaved form of ATF6α, and two of its targets were further confirmed at the protein level by western blot. In summary, these data revealed a number of genes (n = 202) and miRNAs (n = 3) in mesenteric arteries of SHR that had not been related to hypertension previously. The most prominent of these, Thbs4, is related to vascular ER stress that is associated with hypertensionThis work was supported by the European Union, Marie Curie ITN number 606998 and 23571

    Nur77-deficiency in bone marrow-derived macrophages modulates inflammatory responses, extracellular matrix homeostasis, phagocytosis and tolerance

    Get PDF
    The nuclear orphan receptor Nur77 (NR4A1, TR3, or NGFI-B) has been shown to modulate the inflammatory response of macrophages. To further elucidate the role of Nur77 in macrophage physiology, we compared the transcriptome of bone marrow-derived macrophages (BMM) from wild-type (WT) and Nur77-knockout (KO) mice. In line with previous observations, SDF-1α (CXCL12) was among the most upregulated genes in Nur77-deficient BMM and we demonstrated that Nur77 binds directly to the SDF-1α promoter, resulting in inhibition of SDF-1α expression. The cytokine receptor CX3CR1 was strongly downregulated in Nur77-KO BMM, implying involvement of Nur77 in macrophage tolerance. Ingenuity pathway analyses (IPA) to identify canonical pathways regulation and gene set enrichment analyses (GSEA) revealed a potential role for Nur77 in extracellular matrix homeostasis. Nur77-deficiency increased the collagen content of macrophage extracellular matrix through enhanced expression of several collagen subtypes and diminished matrix metalloproteinase (MMP)-9 activity. IPA upstream regulator analyses discerned the small GTPase Rac1 as a novel regulator of Nur77-mediated gene expression. We identified an inhibitory feedback loop with increased Rac1 activity in Nur77-KO BMM, which may explain the augmented phagocytic activity of these cells. Finally, we predict multiple chronic inflammatory diseases to be influenced by macrophage Nur77 expression. GSEA and IPA associated Nur77 to osteoarthritis, chronic obstructive pulmonary disease, rheumatoid arthritis, psoriasis, and allergic airway inflammatory diseases. Altogether these data identify Nur77 as a modulator of macrophage function and an interesting target to treat chronic inflammatory diseas

    Expression of a retinoic acid signature in circulating CD34 cells from coronary artery disease patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Circulating CD34+ progenitor cells have the potential to differentiate into a variety of cells, including endothelial cells. Knowledge is still scarce about the transcriptional programs used by CD34+ cells from peripheral blood, and how these are affected in coronary artery disease (CAD) patients.</p> <p>Results</p> <p>We performed a whole genome transcriptome analysis of CD34+ cells, CD4+ T cells, CD14+ monocytes, and macrophages from 12 patients with CAD and 11 matched controls. CD34+ cells, compared to other mononuclear cells from the same individuals, showed high levels of KRAB box transcription factors, known to be involved in gene silencing. This correlated with high expression levels in CD34+ cells for the progenitor markers HOXA5 and HOXA9, which are known to control expression of KRAB factor genes. The comparison of expression profiles of CD34+ cells from CAD patients and controls revealed a less naïve phenotype in patients' CD34+ cells, with increased expression of genes from the Mitogen Activated Kinase network and a lowered expression of a panel of histone genes, reaching levels comparable to that in more differentiated circulating cells. Furthermore, we observed a reduced expression of several genes involved in CXCR4-signaling and migration to SDF1/CXCL12.</p> <p>Conclusions</p> <p>The altered gene expression profile of CD34+ cells in CAD patients was related to activation/differentiation by a retinoic acid-induced differentiation program. These results suggest that circulating CD34+ cells in CAD patients are programmed by retinoic acid, leading to a reduced capacity to migrate to ischemic tissues.</p

    Meta-Analysis of Placental Transcriptome Data Identifies a Novel Molecular Pathway Related to Preeclampsia

    Get PDF
    Studies using the placental transcriptome to identify key molecules relevant for preeclampsia are hampered by a relatively small sample size. In addition, they use a variety of bioinformatics and statistical methods, making comparison of findings challenging. To generate a more robust preeclampsia gene expression signature, we performed a meta-analysis on the original data of 11 placenta RNA microarray experiments, representing 139 normotensive and 116 preeclamptic pregnancies. Microarray data were pre-processed and analyzed using standardized bioinformatics and statistical procedures and the effect sizes were combined using an inverse-variance random-effects model. Interactions between genes in the resulting gene expression signature were identified by pathway analysis (Ingenuity Pathway Analysis, Gene Set Enrichment Analysis, Graphite) and protein-protein associations (STRING). This approach has resulted in a comprehensive list of differentially expressed genes that led to a 388-gene meta-signature of preeclamptic placenta. Pathway analysis highlights the involvement of the previously identified hypoxia/HIF1A pathway in the establishment of the preeclamptic gene expression profile, while analysis of protein interaction networks indicates CREBBP/EP300 as a novel element central to the preeclamptic placental transcriptome. In addition, there is an apparent high incidence of preeclampsia in women carrying a child with a mutation in CREBBP/EP300 (Rubinstein-Taybi Syndrome). The 388-gene preeclampsia meta-signature offers a vital starting point for further studies into the relevance of these genes (in particular CREBBP/EP300) and their concomitant pathways as biomarkers or functional molecules in preeclampsia. This will result in a better understanding of the molecular basis of this disease and opens up the opportunity to develop rational therapies targeting the placental dysfunction causal to preeclampsia.Peer reviewe

    Platelets in Patients with Premature Coronary Artery Disease Exhibit Upregulation of miRNA340* and miRNA624*

    Get PDF
    Coronary artery disease (CAD) is the leading cause of human morbidity and mortality worldwide, underscoring the need to improve diagnostic strategies. Platelets play a major role, not only in the process of acute thrombosis during plaque rupture, but also in the formation of atherosclerosis itself. MicroRNAs are endogenous small non-coding RNAs that control gene expression and are expressed in a tissue and disease-specific manner. Therefore they have been proposed to be useful biomarkers. It remains unknown whether differences in miRNA expression levels in platelets can be found between patients with premature CAD and healthy controls. In this case-control study we measured relative expression levels of platelet miRNAs using microarrays from 12 patients with premature CAD and 12 age- and sex-matched healthy controls. Six platelet microRNAs were significantly upregulated (miR340*, miR451, miR454*, miR545:9.1. miR615-5p and miR624*) and one miRNA (miR1280) was significantly downregulated in patients with CAD as compared to healthy controls. To validate these results, we measured the expression levels of these candidate miRNAs by qRT-PCR in platelets of individuals from two independent cohorts; validation cohort I consisted of 40 patients with premature CAD and 40 healthy controls and validation cohort II consisted of 27 patients with artery disease and 40 healthy relatives. MiR340* and miR624* were confirmed to be upregulated in patients with CAD as compared to healthy controls in both validation cohorts. Two miRNAs in platelets are significantly upregulated in patients with CAD as compared to healthy controls. Whether the two identified miRNAs can be used as biomarkers and whether they are cause or consequence of the disease remains to be elucidated in a larger prospective stud

    A Conserved Mito-Cytosolic Translational Balance Links Two Longevity Pathways.

    Get PDF
    Slowing down translation in either the cytosol or the mitochondria is a conserved longevity mechanism. Here, we found a non-interventional natural correlation of mitochondrial and cytosolic ribosomal proteins (RPs) in mouse population genetics, suggesting a translational balance. Inhibiting mitochondrial translation in C. elegans through mrps-5 RNAi repressed cytosolic translation. Transcriptomics integrated with proteomics revealed that this inhibition specifically reduced translational efficiency of mRNAs required in growth pathways while increasing stress response mRNAs. The repression of cytosolic translation and extension of lifespan from mrps-5 RNAi were dependent on atf-5/ATF4 and independent from metabolic phenotypes. We found the translational balance to be conserved in mammalian cells upon inhibiting mitochondrial translation pharmacologically with doxycycline. Lastly, extending this in vivo, doxycycline repressed cytosolic translation in the livers of germ-free mice. These data demonstrate that inhibiting mitochondrial translation initiates an atf-5/ATF4-dependent cascade leading to coordinated repression of cytosolic translation, which could be targeted to promote longevity

    HepaRG-Progenitor Cell Derived Hepatocytes Cultured in Bioartificial Livers Are Protected from Healthy- and Acute Liver Failure-Plasma Induced Toxicity

    Get PDF
    Background/Aims: For applicability of cell-based therapies aimed at the treatment of liver failure, such as bioartificial livers (BALs) and hepatocyte transplantation, it is essential that the applied hepatocytes tolerate exposure to the patient plasma. However, plasma from both healthy donors and acute liver failure (ALF) patients is detrimental to hepatocytes and hepatic cell lines, such as HepaRG. We aimed to elucidate the underlying mechanisms of plasma-induced toxicity against HepaRG cells in order to ultimately develop methods to reduce this toxicity and render HepaRG-BAL treatment more effective. Methods: Differentiated HepaRG cells cultured in monolayers and laboratory-scale BALs were exposed to culture medium, healthy human plasma, healthy porcine plasma and ALF porcine plasma. Healthy human plasma was fractionated based on size- and polarity, albumin depleted and heat treated to characterize the toxic fraction. The cells were assessed for viability by total protein content and trypan blue staining. Their hepatic differentiation was assessed on transcript level through qRT-PCR and microarray analysis, and on functional level for Cytochrome P450 3A4 activity and ammonia elimination. Mitochondrial damage was assessed by JC-1 staining and mitochondrial gene transcription. Results: Sixteen hours of healthy human plasma exposure did not affect viability, however, hepatic gene-transcript levels decreased dramatically and dose-dependently within four hours of exposure. These changes were associated with early NF-kB signaling and a shift from mitochondrial energy metabolism towards glycolysis. Healthy human plasma-toxicity was associated with the dose-dependent presence of heat-resistant, albumin-bound and (partly) hydrophobic toxic compound(s). HepaRG cells cultured in BALs were partially protected from plasma-toxicity, which was mainly attributable to medium perfusion and/or 3D configuration applied during BAL culturing. The detrimental human plasma effects were reversible in BAL-cultured cells. Porcine ALF-plasma elicited mitotoxicity additional to the basal detrimental effect of porcine healthy plasma, which were only partially reversible. Conclusion: A specific fraction of human plasma reduces hepatic differentiation of HepaRG cultures, in association with early NF-κB activation. In addition, ALF-plasma elicits mitotoxic effects. These findings allow for a targeted approach in preventing plasma-induced cell damage
    corecore